LCD Module Product Specification OrderingNo:LCD-TFT2.0-122-30pin

(RoHS Compliant Product)

Customer Approval:

Customer P/N:

Approved for sample making.

Approved for pilot production. Please specify minimum quantity (if any) _____ pcs

Approved for mass production.

Customer Signature and Date:

Written By	Checked By	Approv	ved By
(Mechanical)	(R&D)	R&D	QA
	•	•	

Revision .0	Date 10-Jan-2013	Description	Written By	
				Approved By

CONTENTS

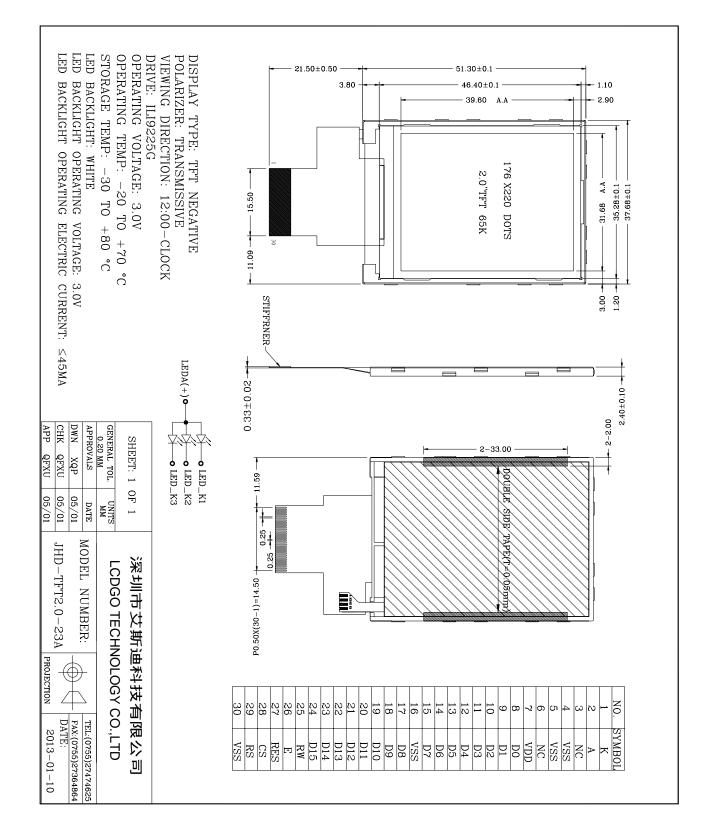
- **1.0 GENERAL SPECIFICATION**
- 2.0 LCM NUMBERING SYSTEM
- 3.0 OUTLINE DRAWING
- 4.0 INTERFACE PIN DESCRIPTION
- 5.0 BLOCK DIAGRAM
- 6.0 OPERATING PRINCIPLE & DRIVING METHOD
- 7.0 ABSOLUTE MAXIMUM RATINGS
- 8.0 ELECTRICAL CHARACTERISTICS
- 9.0 ELECTRO-OPTICAL CHARACTERISTICS
- **10.0 STANDARD SPECIFICATION FOR RELIABILITY**
- 11.0 QUALITY ASSURANCE
- 12.0 PRECAUTIONS FOR USING LCD MODULE
- **13.0 MANUFACTURER CONTACT**

GENERAL SPECIFICATION 1.0

Item	Contents	Unit
LCD type	TFT Transmissive/positive	-
Viewing direction	12:00	O'Clock
Module size (W×H×T)	51.30*37.68*2.40max	mm
Active area (WxH)	39.6*31.68	mm
Driver IC	ILI9225G	-
Number of dots	176(RGB)*220	-
Colors	262k	-
Backlight type	white LED	-
Interface type	System parallel interface	-
VDD	3V	V
Backlight	LED	-
Operating temperature	-20 ~+ 70	°C
Storage temperature	-30 ~ +80	°C
Weight	TBD	g
Input Voltage	2.8V	V

LCM NUMBERING SYSTEM 2.0

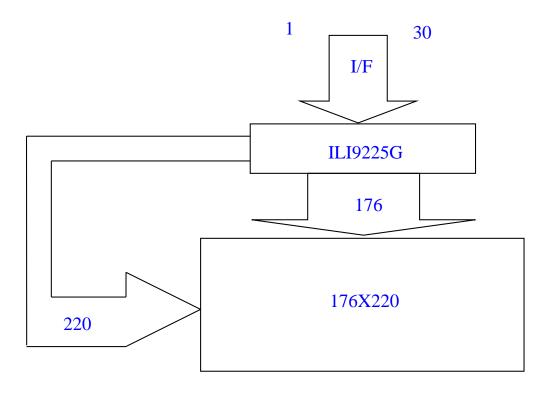
$\underline{JHD}_{(1)} - \underline{TFT}_{(2)} \underbrace{2.0}_{(3)} - \underbrace{23A}_{(4)}$


(1) ShenZhen JHDLCM Electronic Co., Ltd

(2) Display type (S: STN/FSTN, H: HTN, C: CSTN, T: TFT)

(3) Module size

(4) Serial number


3.0 OUTLINE DRAWING

4.0 INTERFACE PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1	K	back light power supply negative
2	А	back light power supply positive
3	NC	NC
4	VSS	Ground
5	VSS	Ground
6	NC	NC
7	VDD	power supply
8-15	D0-D7	Data bits
16	VSS	Ground
17-24	D8-D15	Data bits
25	RW	write select signal input
26	E	read select signal
27	RES	A reset pin.
28	CS	chip select signal input(low active)
29	RS	data or command select signal input
30	VSS	Ground

5.0 BLOCK DIAGRAM

6.0 OPERATING PRINCIPLE & DRIVING METHOD

221	22h	21h	20h	14	13h	12h	11h	10h	OFh	OCh	0Bh	08h	07h	O3h	02h	Oth	00h	π	No.
Read Data to GRAM	Write Dalato GPA M	PA M Address Set 2	PAMAddress Set 1	Power Control 5	Power Control 4	Power Control 3	Power Control 2	Power Control 1	Oscilation Control	Interface Control	Frame Cyce Control	Blank Period Control 1	Display Control 1	Entry Mode	LCDAC Driving Control	Driver CulputControl	Driver Code Read	Index	Re glate rs Name
ъ	\$	۷	w	*	W	\$	×	۷	×	×	×	×	×	×	×	×	70	\$	RW
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	RS
l		•	•	0) DMDOV	•	•	•	•	•	•	9 N	•	•	•	•	9 P	-	•	D15
l		•	•	(1) VOM6	•	() (0)	•	•	•	•	ବୁଷ୍ଣ	•	•	•	•	0) HSP	•	•	D14
l		•	•	(0) VCM6	•	<u>e 9</u>	•	•	•	•	∋ğ	•	•	•	•	9 P	•	•	D13
		•	•	(1) VOM4	•	0) BI	(0) APON	•	•	•	eğ	•	(0)	9 BGR	•	0 P	-	•	D12
		•	•	(0) (0)	•	•	•	0	FOSC3	•	SDT3	(1)	•	•	•	•	•	•	D11
	-	•	•	(9 VCM2	•	•	•	•	F0802	•	00 SDT2	9 7	•	•	•	9 2	0	•	며이
10(17:0): PI	VD[17:0]:PI	•	•	(9 VCM	•	•	•	-	6 F0801	•	80 SPT1	8 H	•	9 M 01	ŝ₹	<u>ල</u> ස	-	•	D9
nassignment	n assignment	•	•	(1) VCM0	•	•	•	•	(1) F0800	() RM	SDTO	9 F	•	09 MDTO	(I) IN	9 X	•	•	D8
RD[17:0]: Pin assignment varies according	WD[17:0]: Pin assignment varies according	AD15	(0)	•	0	•	0	0	•	0	0	0	0	0	0	•	•	107	07
ng to the inter		AD14	(0)	(1) (1)	(1) (1)	•	-	0	•	0	0	0	0	0	0	•	0	1D6	D6
to the interface method.	to the interface method.	AD13	(0)	(1) (1)	GVD6	0	0	0	0	0	0	0	0	3 9	0	0	-	90I	D5
		AD12	(0 AD4	(0) VML4	0 GV D4	-	•	0	•	9 M	•	•	(9 QQ	3 8	•	⊖ NL	•	104	D1
		00 AD11	() AD3	(1) El Mi	0 GVD3	•	•	0	•	•	() RTN	38	9 P	0 A	•	3 NG	•	103	D3
		00 AD 10	(0 AD2	(<mark>0</mark> ML2	() GVD2	•	•	0	•	•	00 RTNZ	8 5	© PE	•	•	(1) NL2	-	102	D2
		0 AD	6 A	(0) (0)	(1) (1)	-	•	•	•	(0 RIM1	00 RTNI	6 F	9 g	•	•	(9 N	-	ē	9
		00 AD	(i) AD	(1) (1)	0 GV D0	•	-	O STB	ON(1)	(0) RIMO	0 RTN	9 B	9 8	•	9 E	(9 N	•	10	8

57h	56h	55h	54h	53h	52h	51h	50h	39h	38h	37h	36h	35h	34h	33h	32h	31h	30h	No.
Gamma Control 8	Gamma Control 7	Gamma Control 6	Gamma Control 5	Gamma Control 4	Gamma Control 3	Gamma Control 2	Gamma Control 1	Vertical Window Address - 2	Vertical Window Address - 1	Ho tizo nla IW Indow Address -2	Hortzonta IW Index Address -1	Partial Driving Position-2	Parlial Criving Posilion -1	Vertical Scroll Control 3	Vertical Scroll Control 2	Vertical Scroll Control 1	G ale Scan Cordrol	Re gisters Name
*	*	*	*	×	*	\$	*	*	۷	*	×	\$	×	*	\$	*	*	RW
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RS
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D15
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D14
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D13
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	D12
(1) (1)	() () () () () () () () () () () () () ((1) (1)	(1) (1)	(0) RP13	(I) KPgg	(1) (1)	09 ^{KP} 13	•	•	•	•	•	•	•	•	•	•	D11
(0 RN12	0 KN62	(0 KN 32	() ¹ 2	00 P12	0 KPg2	(i) KP32	00 KP12	•	•	•	•	•	•	•	•	•	•	D10
(1) (1)	9 K	9 K	3 3	3 <u>1</u>	ତନ୍ତୁ	(9) KP31	9 F	•	•	•	•	•	•	•	•	•	•	D9
(0) (0)	(0) KN50	(0) (0)	(0) (0)	(0)	0 RP	() (P3)	(0) (0)	•	•	•	•	•	•	•	•	•	•	D8
0	0	0	0	0	0	0	0	VSA7 (0)	VEA7 (1)	HSA7 (0)	HEA7 (1)	(0)	SE17 (1)	SST7 (0)	SSA7 (0)	SEA7 (1)	0	D7
0	0	0	0	0	0	0	0	(0) VSA6	VEA6 (1)	10)	(0)	0) (0)	SE16 (1)	SST6 (0)	(0) 848	SEA6 (1)	0	D6
•	•	•	•	•	0	0	•	(0)	VEA 5	0 HS AS	(1)	0 SF	00 SE 15	(0) SST5	(0) (0)	(0) SEA5	•	D5
•	•	•	•	•	•	•	•	V SA4	VEA4	D HSA4	10 HEA4	0 ⁸ 1	SE14	0) (0)	(0) SSA4	SEA4	00 SCN4	D4
(0) RN08	3 A	(1 KN23	(1) N08	(† 18 18 18 18	(1) KP43	(1) KP23	0 80	(0) (0)	VEA 3	о Б АЗ	(† FAS	9 %	SE 13	(0) (0)	(0) SSA3	(1) SEA3	(0) SCN3	D3
RN02	0 KN42	(0 KN22	(0) (0)	0 PO2	0 KP42	(0) (0)	0 KP	0) 0)	VEA2	0 HSA2	HEA2	0 ⁸ 12	SE12	0) 8	(0) SA2	SEA2	(0) SQ12	D2
RN01	0 KN4	(0) KN21	(9) (9)	(1) RPO1	(1) KP	0 KP 21	8 P	VSA1	VEA1 (1)	(0) HSA1	(1) HEA1	0 81	(1) (1)	(0 ST1	(0)	SEA1	(0) SCN1	9
(0) RNOO	0 K	(0) KN20	(0) NO	0 P00	9 1 9	9 8	9 8 8	(0)	VEA0 (1)	(0) HSAO	(1)	0 8 6 8	SE10	0) (0)	(0) 88	SEA0	(0) SCN0	8

66h	65h	63h	62h	61h	60h	59h	58h	No.
S PI Read/Write Control	ID Code	NV Memory Protection Key	NV Memory Status	NV Memory Canitol	NV Memory Data Programming	Gamma Control 10	Gamma Control 9	Re gliste rs Name
Ŗ	D	D	\$	\$	*	\$	\$	RW
			-	-	-	-	-	ß
0	•	t5 KEY	•	•	0	•	•	D15
0	•	KEY	۰	•	•	•	•	D14
۰	•	ta KEY	ONT2	•	•	•	•	D13
•	•	12	CNT1	•	•	VRN14	(0)	D12
0	•	± ₩	•	•	•	0) 0)	00 VPP13	D11
0	•	10 KEY	•	•	•	VRP12 (1)	VPP12	며이
0	•	9 KEY	•	•	•	VRP11 (1)	(1) VRP1	D9
0	•	® ₩	•	SEL VOM	0	VRP10 (1)	VRP10	08
0	0	KEY 7	•	•	N/M	•	0	07
0	0	6 6	D6 	0	D6	0	0	D6
0	0	6 KEY	06 VOM_	•	N/M	•	0	D5
0	•	KEY	VCM_ D4	•	NVM_ D4	VRN04 (1)	(1) 1004HA	D4
0	103	∞Ęγ	100 V 004_	•	D3	(0)	(0)	03
0	102	2 19	VCM_	•	NVM_ 02	V FIN02	(0) 00	D2
0	₫	- @	Di VOM	ID_PGM_	DI NVM	(0)	() () () () () () () () () () () () () (9
R/WX	100	- ₽	B NOW	VOM_	8 M	(0) (0)	() 17 () 17	8

7.0 ABSOLUTE MAXIMUM RATINGS (Ta = 25° C, V_{SS} = 0 V)

The absolute maximum rating is listed on following table. When ILI9225G is used out of the absolute maximum ratings, the ILI9225G may be permanently damaged. To use the ILI9225G within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the ILI9225G will malfunction and cause poor reliability.

Item	Symbol	Unit	Value	Note
Power supply voltage (1)	IOVCC	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (1)	VCI – GND	V	-0.3 ~ + 4.6	1, 4
Power supply voltage (1)	AVDD – GND	V	-0.3 ~ + 6.0	1, 4
Power supply voltage (1)	GND –VCL	V	-0.3 ~ + 4.6	1
Power supply voltage (1)	AVDD – VCL	V	-0.3 ~ + 9.0	1, 5
Power supply voltage (1)	VGH – GND	V	-0.3 ~ + 18.5	1, 5
Power supply voltage (1)	GND – VGL	V	-0.3 ~ + 18.5	1,6
Input voltage	Vt	V	-0.3 ~ VCI+ 0.3	1
Operating temperature	Topr	ŝ	-40 ~ + 85	8, 9
Storage temperature	Tstg	S	-55 ~ + 110	8, 9
M .				

Notes:

1. VCI,GND must be maintained

2. (High) VCI ≥ GND (Low), (High) IOVCC ≥ GND (Low).

Make sure (High) VCI ≥ GND (Low).

Make sure (High) AVDD ≥ ASSD (Low).

Make sure (High) AVDD ≥ VCL (Low).

6. Make sure (High) VGH ≥ ASSD (Low).

7. Make sure (High) ASSD ≥ VGL (Low).

8. For die and wafer products, specified up to 85 °C.

9. This temperature specifications apply to the TCP package

8.0 ELECTRICAL CHARACTERISTICS (VCI = 2.50 ~ 3.30V, IOVCC = 1.65 ~ 3.30V, Ta = -40 ~ 85 °C)

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input high voltage	VIH	v	IOVCC= 1.65 ~ 3.3V	0.8*IOVCC		IOVCC	-
Input low voltage	VIL	v	IOVCC= 1.65 ~ 3.3V	0	-	0.2*IOVCC	-
Output high voltage(1) (DB0-17 Pins)	V _{OH1}	v	IOH = -0.1 mA	0.8*IOVCC	-	-	-
Output low voltage (DB0-17 Pins)	V _{OL1}	v	IOVCC=1.65~3.3V VCI= 2.5 ~ 3.3V IOL = 0.1mA	-	-	0.2*IOVCC	-
VO leakage current	lu	μA	Vin = 0 ~ IOVCC	-0.1	-	0.1	-
Current consumption during standby mode (VCI – GND)	Ist	μA	VC⊫2.8V , Ta=25 ℃	-	-	100	
LCD Driving Voltage (AVDD-GND)	AVDD	v	-	4.5	-	6	-
Output voltage deviation		mV	-	-	20	-	-
Dispersion of the Average Output Voltage	v	mV	-	-20	-	20	-

9.0 ELECTRO-OPTICAL CHARACTERISTICS

	ltem	Symbol	Unit	Min.	Max.	Test Condition
Bus cycle time	Write	toyow	ns	66	-	-
Bus cycle tille	Read	t _{CYCB}	ns	300	-	-
Write low-level pu	ilse width	PW⊾w	ns	35	500	-
Write high-level p	ulse width	PW _{HW}	ns	35	-	-
Read low-level pu	lse width		ns	150	-	-
Read high-level p	ulse width	PWHR	ns	150	-	
Write / Read rise /	fall time	twer/twer	ns	-	15	
Setup time	Write (RS to nCS, E/nWR)	t		10	-	
Setup time	Read (RS to nCS, RW/nRD)	tas	ns	5	-	
Address hold time	ç	tан	ns	5	-	
Write data set up	time	t _{DSW}	ns	10	-	
Write data hold ti	tн	ns	15	-		
Read data delay t	ime	t _{DDR}	ns	-	100	
Read data hold tir	ne	t _{DHR}	ns	5	-	

Normal Write Mode (IOVCC = 1.65~3.3V, VCI=2.5~3.3V)

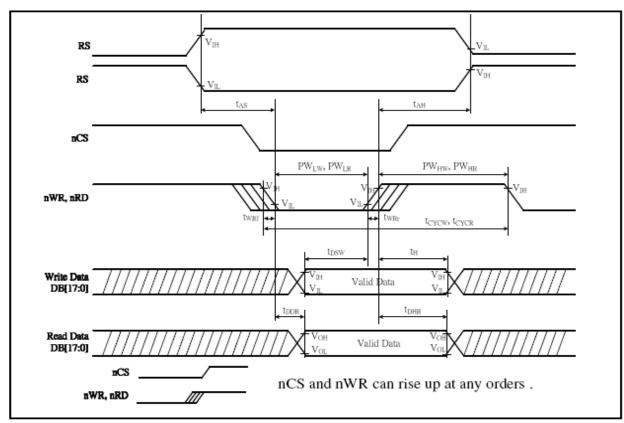


Figure45 i80-System Bus Timing

10.0 STANDARD SPECIFICATION FOR RELIABILITY

	10.1 Standard specification of Reliability Test											
No.	Test Item	Content of Test	Test Condition									
1	High temperature operation	Endurance test applying the high storage temperature for a long time.	70°C+/-2°C 96H Restore 2H at 25°C Power on									
2	Low temperature operation	Endurance test applying the low storage temperature for a long time.	-20°C+/-2°C 96H Restore 2H at 25°C Power on									
3	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30 °C+/-2°C 96H Restore 2H at 25°C Power off									
4	High temperature storage	Endurance test applying the low storage temperature for a long time.	80 °C +/-2°C 96H Restore 2H at 25°C Power off									
5	High Temperature& Humidity Operation		60°C+/-2°C 90% RH 96H Power on									
6	Temperature Cycle		$30^{\circ}C \clubsuit 25^{\circ}C \bigstar 80^{\circ}C$ $30min 5min 30min$									
7	Vibration Test		10Hz~150Hz, 100m/s2, 120min									
8	Shock Test		Half -sinewave, 300m/s,11ms									
9	Drop Test(package state)		800mm, concrete floor, 1 corner, 3 edges, 6 sides each time									
10	Damp heat Operation	Endurance test applying the electric stress and temperature / humidity stress to the element for a long time.	+60 °C, 95%RH for 500Hrs									
11	Thermal cycles operation	Endurance test applying the thermal shock operation for a long time.	Display on , 2h at -30°C ; shift from - 30°C to + 80°C with gradient of 3°C/min; 2 h at 80°C; shift from +80°C to - 30°C with gradient of 2°C/min , repeated 100 times.									
12	Thermal shocks	Endurance test applying the thermal shock operation for a long time.	Display off, 1h at -30°C ; shift from - 30°C to + 80°C in 10 s max. 1 h at 80°C; shift from + 80°C to - 30°C in 10 s max. , repeated 100 times									
13	Random vibrations	Endurance test applying the vibrations. for a long time when transportation	Test 3 axes during 8 hour/axe - from 5 to 200 Hz: Acc = 10G - from 200 to 500 Hz : Amplitude =5mm - from 5 to 12HZ. Scanning speed= 1 octave / min									

10.1 Standard specification of Reliability Test

14	ESD test	To check the immunity of display to ESD incurred during storage, handling, maintenance and assembly operation.	Discharge resistance = $2k\Omega$ Discharge capacitance = $150pF$ Number of discharges = $3times$ Discharge interval = $3 sec$ Discharge voltage = $\pm 2 kV$ on COG connection interface.
15	FPC pull test	To verify the FPC/ glass connection resistance to pull forces applied to the FPC.	Keeping the LCD fixed, pull the FPC/FFC with a force F= 40 N for cm width of FPC at glass connection.
16	FPC peel test	To verify the FPC/ glass connection resistance to peel forces applied to the FPC.	Keeping the LCD fixed, pull the FPC/FFC according to the figure above with a force F= 10 N for cm width of FPC at glass connection. The minimum bending radius has to be 2 mm

Remarks:

1) For operation test, above specification is applicable when test pattern is changing during entire operation test.

2) Inspections after reliability tests are performed when the display temperature resumes back to room temperature.

3) It is a normal characteristic that some display abnormality can be seen during reliability test. If the display abnormality can resume back to normal condition at room temperature within 24hours, there is no permanent destruction over the display. The display still possesses its functionality after reliability tests.

10.2 Failure Judgment Criteria

After the reliability tests above, test sample shall be let return to room temperature and humidity for at least 4 hours before final tests are carried out.

Criterion Item	Failure Judgment Criteria
Electrical characteristic	Electrical short and open.
Mechanical characteristic	Out of mechanical specification
Optical characteristic	Out of the Appearance Standard

11.0 QUALITY ASSURANCE 11.1 Inspection Standard

Item	Contents					
Objective	This product inspection standard is intended to provide an inspection guideline for the					
	LCD or LCM products manufactured by the Company for automotive customer MM.					
Scope	Applicable to the inspection criteria of dimension, appearance, functionality etc.for the					
	LCD or LCM products supplied to the customer MM. Criteria not included in this					
	Inspection Standard will be justified in accordance with any documents agreed upon					

	otherwise.					
Inspection Unit	An inspection unit is a unit of display under inspection. The unit for the dimension addressed in this inspection standard is referring to mm, unless otherwise specified.					
Inspection System	1: Inspection system includes inspection during production inspection and outgoing					
	product inspection.					
	2: Process inspection is the inspection for appearance and functionality of the products					
	during the production process.					
	3: Outgoing inspection is the inspection for the finished products prior to the delivery,					
	based on defined sampling plan.					
Inspection						
Condition	1: Inspection equipments: Equipment and tools used for inspection, measuring and					
	testing during the inspection process.					
	2: Inspection conditions are described as the following.					
	Distance: 40cm between the observer's eyes and the LCD.					
	Viewing angle: according to main viewing direction (MVD).					
	Fluorescent Fluorescent					
	about 40 cm lamp 72 W about 40 cm					
	Max 250 LUX					
	Polarizer					
	specific project backlight					
	Fig 1Fig 2Trasflective or Transmissive LCD/LCMReflective LCD/LCM					
	FPC TAB					
	IC Polarizer					
	Zone A: Inside Viewing Area Zone B: Outside Viewing Area					
	Fig 3 Product Configuration					

Inspection Item	Acceptance/Rejection Criteria	Defect Classification	Method	Applicable Zone
Functional	 No display defect is not acceptable. Abnormal display defect is not acceptable. Missing segment and extra segment is not acceptable. Dim contrast or dark contrast is not acceptable. Current consumption (Idd MAX) shall not exceed the limit specified on the MI. Wrong/reversed viewing angle is not acceptable. Uneven contrast or stripe defect shall be in accordance with mast sample. (Refer to specified limit sample if applicable) Display character/ pattern shall be referred to the Test Instruction of the related models. 	Major er	Visual	A
Pattern Deformation	A \rightarrow W Size Acceptable Number A ≤ 0.10 or A $\leq 1/4W$, 1 per segment whichever is less 3 per display A>0.10 or A>1/4W, Unlimted whichever is less 1 Note: Protrusion shall not cause bridging between adjacent segments	Major	Visual Magni fier	A

11.2 Acceptance Criteria (Zastron internal standard: JU-MM)

Black or white	lawath		Minor	Visual	Α
spots (on pattern),	length			Magni	11
pin hole	width Size, d (n	m) Acceptable q	antity	fier	
	$d \le 0.10$				
	0.10 < d ≤	0.20 1			
	d > 0.2	0 0			
	width $d = (length +)$	width) / 2			
	↑				
	Note:				
	Number of spot shall not be more than 1				
Chip-out	If 2 spots exist, the distance must be > 20 A. General chip-out (for glass edges and			Visual	В
Chip-out	seal)	glass corner along per		Magni	D
				fier	
	The ist in the second s		$\supset \square$		
		£63× /			
		×, //			
		14			
	X Y	Z			
	≤ 2.0 ≤ 1.5 or $\leq Ls$, whicheve				
	≤ 2.0 ≤ 1.0 or $\leq Ls$, whicheve	r is less $\leq t$			
	X = length parallel with glass edge. Y = width perpendicular with glass edg	0			
	Z = height of glass	C			
	t = single glass thickness				
	Note:				
	Chip out shall not reach the perimeter set				_
	B: Chip-out at terminal ledge or back of	f terminal ledge, but n	o Minor	Visual	В
	exactly on terminal			Magni fier	
	134	XY	Z	Tier	
		≤2.0 ≤1.5 ≤	≤1/2t		
		≤2.0 ≤1.0	≤t		
			·		
		Note:			
		In the event that the dista between the chip-out loc			
		the terminal is less than	he width		
	x x z z x x	of ITO pad Le, the accept criteria of chip-out on te			
		shall apply.			

	C: Chip-out and protuberance at terminals	Minor	Visual	В
	W W U W U Meet the dimension tolerance of the drawing V V V		Magni fier	
	D: Chip-out at corner (ITO ledge) $\begin{array}{c c} X & Y & Z \\ \hline & \leq 2.0 & \leq 2.0 & \leq t \\ \end{array}$	Minor	Visual Magni fier	B
Crack line	Crack line is not acceptable.	Minor	Visual Magni fier	A & B
Number of Chip- out	Maximum acceptable number of chip-out: 2 defects per LCD; 1 defect on ITO ledge. Distance between chip-out: > 5mm.	Minor	Visual	В

Black spot								Visual	А
White spot		W	Acceptable			Magni			
Bubble		→ D Number D≤0.10 Unlimited			Minor	fier			
Foreign material					Ur	nlimited	Minor		
Dent			0.10<	<d≪0.2< td=""><td></td><td>1</td><td></td><td></td><td></td></d≪0.2<>		1			
			D	>0.2		0			
		r				e distance veen each			
0		D=	= (L+V	W) /2				X72 1	
Scratch line							Minor	Visual	A
Dark line Lint	L L		W					Magni fier	
				Accepta	able]			
	Length	Width		Numb		-			
	L≤3.0	W≤0.0		2		-			
	L≤1.5	W≤0.0 W>0.0		1		-			
	Note: If 2 line defects co-exist, the distance must be > 20mm between each other								
Endseal			_				Minor	Visual	A,B
	A: Length of end-sealant B: Length of seal mouth C: Perimeter seal width					Magni fier			
	1.Minimum amount of	of end-sealar	nt filled	1 A > 1/3 B					
	2.Maximum amount				over to	Zone A,			
	Viewing Area (VA).								
	3.Dimension of end seal shall meet the dimension specified on the								
	drawing.								
	4.Deformation of perimeter seal which result in perimeter seal								
	becoming less than 1/		-						
Polarizer	Polarizer position sha	Ill meet the o	limens	ion toleranc	e indica	ated on the	Minor	Visual	A,B
Dealtonound aalon	drawing	11 not avaaa	d than	ange of the l	limit co		Minor	Vienel	•
Background color	Background color sha Obvious uneven colo			-		mple.	Minor	Visual	A
Ink printing	1. Pattern position of		,			vina	Major	Visual	A
lik plinnig	2. Pattern appearan	-	-			vilig.	Major	Visual	
	3. Reverse printing			urawing	•		Major	Visual	1
	4. Printing color sh			er sample			Major	Visual	
	 Frinding color sin Insufficient ink, 			_	attern a	re not	Major	Visual	-
	acceptable.		- Patter	ii, orokeli p	aueiii a	10 1101	1110	, isuai	
	6. Angle of the prin and the glass edg	-				-	Major	Visual	

	7. The printed patterns shall be free of stain, fingeprint and scratch.	Major	Visual Magni fier	
	8. Spot/pinhole on the pattern.	Major	Visual	
	D Acceptable Number ↓ w D≤0.10 Unlimited			
	0.10 <d≤0.20< td=""> 1 D>0.20 0</d≤0.20<>			
	L Note: If 2 spots exist, the distance must be > 20mm between each other			
	D= (L+W) /2			
	9. Ink pattern deformation	Minor	Visual Magni fier	A
	Protrusion ≤ 0.10 or $\leq 1/4$ W, whichever is less,			
	Indentation ≤ 0.10 or $\leq 1/4$ W, whichever is less			
	10. Ink line deformation $ \begin{array}{c c} \hline \\ \hline \\$	Minor	Visual Magni fier	A
	A-B≤0.15			
	11. Pattern misalignment 12 o'clock 90° -60° 6 o'clock	Minor	Visual	A
	Dimension must meet the requirement on the drawing For 12 o'clock viewing angle product, light leakage between 90° to 60°			
	shall not be seen.			
	For 6 o'clock viewing angle product, light leakage between 90° to -60°			
HSC	shall not be seen. 1. The outer dimension shall meet the MI/drawing.	Minor	Visual	В
FPC	1. The outer dimension shall meet the lyn/drawing.		visual	

	2. FPC, HSC, FFC, shall not have folding/stress/dented mark with			
	sharp angle on the surface.			
	Curve surface OK Sharp angle NG Sharp angle NG			
	Image: second			
	4.Scratch on FPC、HSC、FFC、TAB shall not damage the PI layer and the conductive traces.			
	5.Goldfinger of FPC, TAB, FFC shall be free of solder.			
	6.Goldfinger of FPC、TAB、FFC shall be max 5% of area of	Major	Visual	В
	oxidization and corrosion.			
Stiffening tape	1. The tape sticking position shall meet the requirement on the	Minor	Visual	В
Identity Label	MI/drawing.2. Missing label/tape/marking is not acceptable.			
	 Missing label/tape/marking is not acceptable. The format of identification (including date code and product 			
Identity marking	code) shall meet the requirement (eg. label,color marking, inkjet printing) on the MI/drawing.			

Metal bezel	1. Dimension and specification shall meet the requirment on the			В
	MI/drawing.			
	2.The lock tab of bezel shall not have wrong bending orientation, N		Visual	В
	missing tab, or crack.			
	3.Bezel shall be free of rust, twist, deformation, finger print, oil stain and	Minor		В
	unknown contamination.			

12.0 PRECAUTIONS FOR USING LCD MODULE

12.1 Handing Precautions

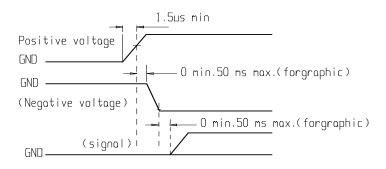
- 12.1.1 The display panel is made of glass and polarizer. Do not subject it to mechanical shock by dropping or impact which may cause chipping especially on the edges.
- 12.1.2 Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 12.1.3 If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with Isopropyl alcohol or ethyl alcohol. Avoid using solvents like acetone (ketene), water, toluene, ethanol to clean the polarizer surface.
- 12.1.4 Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- 12.1.5 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 12.1.6 Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion.
- 12.1.7 Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 12.1.8 NC terminal should be open. Do not connect anything.
- 12.1.9 If the logic circuit power is off, do not apply the input signals.
- 12.1.10 Avoid contacting oil and fats.
- 12.1.11 Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- 12.1.12 Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.

12.2 Electro-Static Discharge Control

- 12.2.1 Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.
- 12.2.2 Be sure to ground the body when handling the LCD modules. Tools required for assembling, such as soldering irons, must be properly grounded.
- 12.2.3 To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

- 12.2.4 The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 12.2.5 When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.

12.3 Precaution for soldering to the LCM


- 12.3.1 Observe the following when soldering lead wire, connector cable and etc. to the LCD module.
 - Soldering iron temperature: 300 ~ 350°C.
 - Soldering time: ≤ 3 sec.
 - Solder: eutectic solder.

Above is a recommended approach based on a 5mm distance between soldering point and pin contact point. Due to different solder composition, actual distance between soldering and contact point, and processing method, it is recommended that customer to study and fine tuning their soldering process parameters accordingly so that the temperature at pin-LCD contact point does not exceed 85°C during soldering..

12.3.2 If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

12.4 Precautions for Operation

- 12.4.1 Viewing angle varies with the change of liquid crystal driving voltage (V_0) . Adjust V_0 to show the best contrast.
- 12.4.2 Driving the LCD in the voltage above the limit shortens its lifetime.
- 12.4.3 Response time is greatly delayed at temperature below the operating temperature range. However, it will recover when it returns to the specified temperature range.
- 12.4.4 If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- 12.4.5 When turning the power on, input each signal after the positive/negative voltage becomes stable (below figure is a general illustration where typical value depends on individual product design).

12.5 Storage

12.5.1

When storing LCDs as spares for some years, the following precautions are necessary.

• Store them in a sealed polyethylene bag. If properly sealed, there is no need for desiccant.

• Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.

12.5.2 Environmental conditions:

- Do not leave them for more than 168hrs. at 60°C.
- Should not be left for more than 48hrs. at -20°C.

12.6 Safety

- 12.6.1 It is recommended to crush damaged or unnecessary LCD into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 12.6.2 If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.